文章编号: 0258-7025(2009)10-2598-05

Er:YAG 激光和 Er,Cr:YSGG 激光消融牙釉质的阈值研究

林 实1 彭奇明1 詹振林2 刘清华1 林 琪1

1 福建医科大学口腔医学院全人中心,福建 福州 350002

(2 福建师范大学医学光电科学与技术教育部重点实验室,福建福州 350007/

摘要 通过离体牙实验,采用 Er: YAG 激光和 Er, Cr: YSGG 激光对人恒牙牙釉质进行消融阈值的实验研究。使用 渐增的 2~10 J/cm² 能量密度对 70 个牙釉质样本进行辐照,应用体视显微镜和扫描电镜观察辐照后牙釉质表面的 形态改变。结果表明, Er: YAG 激光和 Er, Cr: YSGG 激光均能有效地消融牙釉质, Er: YAG 激光消融牙釉质的阈 值为3.19~4.36 J/cm², Er, Cr: YSGG 激光消融牙釉质的阈值为4.12~4.80 J/cm²。

关键词 激光光学;消融阈值;消融;牙釉质;Er,Cr:YSGG激光;Er:YAG激光

中图分类号 TN249; R318.51 文献标识码 A doi: 10.3788/CJL20093610.2598

Study of the Ablation Threshold of Er: YAG and Er, Cr: YSGG Lased Dental Enamel

Lin Shi¹ Peng Qiming¹ Zhan Zhenlin² Liu Qinghua¹ Lin Qi¹

¹ Family Dentistry, College of Stomatology, Fujian Medical University, Fuzhou, Fijian 350002, China ² Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fijian 350007, China

Abstract The aim of the study is to evaluate the ablation threshold of enamel of human permanent tooth for Er: YAG laser and Er, Cr: YSGG laser. 70 enamel samples were treated with increasing energy densities of $2 \sim 10$ J/cm². The surface changes were assessed by means of reflected light microscope and scanning electron microscope. Both Er: YAG laser and Er, Cr: YSGG laser are effective in ablating human tooth enamel. The ablation threshold value of Er: YAG laser in dental enamel is $3.19 \sim 4.36$ J/cm². As to Er, Cr: YSGG laser, the ablation threshold value is $4.12 \sim 4.80$ J/cm². **Key words** laser optics; ablation threshold; ablation; enamel; Er, Cr: YSGG laser; Er: YAG laser

1 引 言

使用低速或高速的气涡轮手机进行龋坏组织去 除和窝洞制备的过程往往伴随着病人的恐惧和焦 虑。虽然通过局部麻醉处理可以减少疼痛,但是大 多数病人仍然抱怨由转动引起的气压、热、震动和噪 声等。这些不足促使人们不断研究新的牙体硬组织 处理技术,牙科激光技术应运而生,得到了许多学者 和临床口腔医师的青睐。

近年来,激光在医学和牙科的应用日益受到重视,美国食品和药物管理局(FDA)批准了多种波长

的医学和牙科用激光器^[1],但是以往的研究仅局限 在激光对牙体硬组织矿物质改变的影响上^[2],应用 于提高牙齿的抗龋性能和脱敏作用等^[3~6]。F.H. Takeda 等^[7]研究也发现,Er:YAG激光和Er, Cr:YSGG激光对牙体组织产生消融,有望取代传统 机械切割方式,但其对激光消融阈值和特性尚不了 解,有待进一步研究。

本实验主要研究 Er: YAG 激光(λ=2.94 μm) 和 Er,Cr: YSGG 激光(λ=2.79 μm)作用于人恒牙 牙釉质的消融阈值和消融特性。

收稿日期: 2009-07-13; 收到修改稿日期: 2009-08-17

基金项目:福建省重点科技项目(2009N0034)、福建省科技厅青年人才项目(2007F3032)和福建师范大学医学光电科学 与技术教育部重点实验室开放课题(JYG0803)资助课题。

作者简介:林 实(1968—),男,副教授,博士,主要从事激光牙医学和口腔临床等方面的研究。

E-mail: fjlinshi@126.com

2 材料与方法

2.1 主要仪器设备

仪器设备主要有: Er, Cr:YSGG 激光系统 (Biolase Technology, San Clemente, CA, USA), Er:YAG激光系统(Contour Profile 2940, USA), 慢速金刚锯(650, SBT, USA),能量计(PE50BB, Ophir, Israel),体视显微镜(mz16fa, Leica, Germany),扫描电镜(JSM-6380lv, JEOL, Japan)。

林

2.2 实验方法

选用因医学原因拔除的人恒磨牙作为实验材料。要求根尖孔发育完全,无龋坏或充填体,未做过 牙髓治疗,无根裂等缺陷。清除附着的牙结石、牙菌 斑等异物,保存于生理盐水中,并在1个月内使用。 按照 C. Apel 等^[8]的方法,用慢速金刚锯在喷水冷 却下沿牙体长轴方向将牙切成2~3个部分,暴露牙 釉质,180 目石英砂打磨。然后浸泡于生理盐水中, 密封直至使用。共制作70个样本,Er:YAG激光 和 Er,Cr:YSGG激光各使用35个样本。

Er:YAG 激光系统实验装置如图1所示。激光波 长为 2.94 µm,脉冲频率在 1~40 Hz 范围内可调,功 率范围为 0~45 W,脉宽范围为 100 µs~50 ms。激 光光束通过关节臂传输系统传输后垂直照射于样本 表面,光斑直径为 1.0 mm。本研究中脉冲频率设置 为 1 Hz,每个位点辐照 1 s,即辐照位点的脉冲数为 1。牙齿样品在不喷水状态下使用 0~10 J/cm² 渐增 的能量密度辐照。

图 1 Er: YAG 激光实验装置图

Fig. 1 Experimental set-up of Er: YAG laser
Er, Cr: YSGG 激光系统实验装置如图2所示。激光器发出的激光波长为 2.79 μm,脉冲频率为20 Hz, 功率在 0~6 W范围内可调,脉宽为 140 μs。激光光 束通过光纤传递,工作端距离样本 1 mm,光斑直径为 0.60 mm 或 0.75 mm。在水 70%,气 60%(体积分数)的状态下垂直于样本表面进行非接触式辐照。每 个位点辐照 5 s,共计 100 个脉冲。本研究中使用

图 2 Er, Cr: YSGG 激光实验装置图

Fig. 2 Experimental set-up of Er,Cr:YSGG laser 0~10 J/cm²渐增的能量密度。

2.3 评价标准

激光辐照中和辐照后的目测观察指标主要 有^[7]:组织去除情况、硬组织脱色变化、冒火花和冒 烟。辐照后,分别在肉眼和体视显微镜放大100倍 后观察样品组织形态变化,检测样品的消融特征。 该评定过程由一位口腔科医师和一位激光医学专家 共同进行,变色不视为消融,只有组织被去除才被认 定为消融。

2.4 细节观测

选取体视显微镜观测典型样本,常规扫描电镜样 本制备后进行扫描电镜观察消融细节,并摄取图像。

2.5 统计学方法

应用多元概率比(Probit)回归分析,在 SPSS 15.0统计软件下进行数据处理,定义消融发生概率 为80%~95%的可信区间,并绘制相关图表。实验 用激光系统和不同的激光辐射组织样品的激光参数 和光剂量分别见表1和表2。

表1 实验用激光系统

Tahl	le 1	Experimental	laser	system
------	------	--------------	-------	--------

Laser	Manufacture	r Main ann an Anna	
system	& model	Main parameters	
		Wavelength: Er:YAG@2.94 µm	
Pulse	Contour	Maximum power output:45 W	
Er: YAG	profile	Energy output:0~25.0 J	
laser emit	2940	Pulse frequency:1~40 HZ	
system	USA	Pulse duration:100 μ s \sim 50 ms	
		Transmission system: Joint system	
	Biolase	Wavelength: Er, Cr: YSGG@2.79 $\mu \mathrm{m}$	
Pulse Er,	Technology	Maximum power output:6.0 W	
Cr: YSGG	Son	Energy output:0.25~6.0 W	
laser	Jan	Pulse frequency:20 Hz	
emit	clemente,	Pulse duration: 140 μ s	
system	CA	Transmission system fiber	
5,5tem	USA	optical system	

表 2	不同激光辐射组织样品的激光参数和光剂量
-----	---------------------

I able 2	Energy densities and main properties
	of different types of laser

		P	Energy
Laser	Main	Energy	density
types	parameters	density	$/(J/cm^2)$
		(theory)	(practice)
		2.5 J/cm^2	1.43
Pulso	Pulse frequency 1 Hz	3.8 J/cm^2	2.20
		5.0 J/cm^2	3.09
Er: IAG	Spot diameter: 1 mm	6.3 J/cm^2	3.86
		7.5 J/cm^2	4.78
		0.25 W	1.14
Pulse	Pulso frequency 20 Hz	0.50 W	2.65
Er,	Spot diameter:0.60 mm	0.75 W	4.21
Cr: YAG		1.00 W	5.09
		1.25 W	5.82
	Pulse frequency:20 Hz Spot diameter:0.75 mm	0.25 W	0.93
		0.50 W	2.13
		0.75 W	3.35
		1.00 W	3.94
		1.25 W	4.83

3 结果与讨论

3.1 消融阈值

基于体视显微镜的观测,定义 Er: YAG 激光和 Er,Cr: YSGG 激光辐照牙釉质的消融阈值的能量密度 区间。图 3显示消融发生概率与能量密度之间的函数 关系。定义消融的发生概率为 80%时,Er: YAG 激光 消融牙釉质的阈值为3.19~4.36 J/cm²,Er,Cr: YSGG 激光消融牙釉质的阈值为4.12~4.80 J/cm²。

本研究获得的 Er:YAG 激光的结果和以往文 献报道的结果相比偏低。R. Hibst 等^[9]通过模型计 算得出 Er:YAG 激光消融阈值约为10 J/cm²。 C. Apel等^[8]测得 Er: YAG 消融牙釉质的消融阈值 为9~11 J/cm²。D. Fried 等^[10] 定义消融阈值为 7~9 J/cm²。A. V. Belikov 等^[11]的研究认为消融 阈值约为 8 J/cm²。

至于 Er, Cr: YSGG 激光, C. Apel 等^[8] 测得不喷 水时 Er, Cr: YSGG 激光消融牙釉质的消融阈值为 $10 \sim 14 \text{ J/cm}^2$ 。H. W. Kang 等^[12]测得不喷水时 Er, Cr: YSGG激光消融牙釉质的消融阈值为1.2 J/cm², 喷水条件下消融牙釉质的消融阈值为 2.1 J/cm²。 A. V. Belikov 等^[11]的研究认为 Er, Cr: YSGG 激光的 消融阈值为4 J/cm²。

这些研究文献既少且结果不统一,可能因素为: 1)消融的定义不一。到目前为止对不同激光作用下 生物组织的消融阈值还没有一个十分确切的界定, 对消融现象的评估还没有建立客观的标准[13]。牙 釉质属于一种生物学物质,由于生物学物质存在较 大差异性,故很难将其消融概率精确至100%。 H. W. Kang等^[12]在研究中定义发生概率为 50%, 带来的误差相对太大,本研究采用 80% 特异度较适 合实际情况。2)消融对象不一。确定消融阈值时, 以往的文献报道很少考虑不同牙釉质区域的组织构 成的差异。牙釉质不同部位的差异,即使是水含量 的轻微差异也会导致实验结果的不同。这可能是本 研究的结果与其他学者的结果存在差异的原因之 一。3)消融的激光参数不一。使用的激光参数不同 对消融阈值的确定也会造成影响,生物组织的消融 依赖于激光的各种物理参数(包括波长、脉冲的持续 时间、能量密度、功率密度、输出方式等)[14~16]。纵 观各研究发现不同研究所使用的实验平台均有所差 异,这也是造成结果不一的原因。本研究所搭建的 实验平台和牙科临床中所使用的激光的实际情况类 似,所获得的实验结果对临床更有指导意义。

3.2 扫描电镜观察结果

基于体视显微镜的观测, Er: YAG 激光能量密 度在3.19~4.36 J/cm² 时样本表面产生熔融改变。 在某些样本,低于这一区间也会发生消融,而另外一 些样本高于这一区间也没有发生消融。对于同一个 样本,相同的辐照位点也会同时存在消融区和未消 融区。对于 Er, Cr: YSGG 激光,消融能量密度为 4.12~4.80 J/cm²,上述特殊情况同样存在。

扫描电镜观察到 Er: YAG 激光和 Er, Cr: YSGG激光消融牙釉质的形状呈弹坑状,边缘不

energy density	magnification (80 $ imes$)	magnification (1000 \times)
1.43 J/cm ² (no ablation in the dental enamel)		1911 - 11.000 - 10- 1
2.20 J/cm ² (ablation occurred partially in the irradiated area)	1514 Mar 1992	ter and the
3.09 J/cm ² (remarkable ablation in the dental enamel)	11.00 - 200	
3.86 J/cm ² (much more obvious ablation was seen)	1940 an 1955	
4.78 J/cm ² (remarkable ablation over the entire irradiated area)	itiz an TRE	

图 4 牙釉质 Er: YAG 激光消融的扫描电镜图 Fig. 4 Sample SEM images for the Er: YAG laser of enamel

energy density	$\begin{array}{c} \text{magnification} \\ (100\times) \end{array}$	$\begin{array}{c} \text{magnification} \\ (1000 \times) \end{array}$
1.14 J/cm ² (no ablation in the dental enamel)	man and and	and and the
2.65 J/cm ² (ablation occurred partially in the irradiated area)	Iann rum uga	
4.21 J/cm ² (remarkable ablation in the dental enamel)	1910 XIOP (QTTT)	
5.09 J/cm ² (much more obvious ablation was seen)		
6.40 J/cm ² (remarkable ablation over the entire irradiated area)	an van ve	

规则。高倍镜下观察发现牙釉质釉柱层发生消融, 消融区表面呈不规则锯齿状,类似牙釉质酸蚀以后 的效果。此外,在一些样本中可见消融区表面存在

图 6 牙釉质 Er: YAG 激光消融特征的扫描电镜图 Fig. 6 Sample SEM images for the Er: YAG laser ablation of enamel

图7 牙釉质 Er, Cr: YSGG 激光消融特征的扫描电镜图 Fig. 7 Sample SEM images for the Er, Cr: YSGG

laser ablation of enamel

碎屑以及微小裂隙,如图 4~7 所示。

牙釉质是一种含 8%~12%水,85%~95%无 机物,2%~3%蛋白和脂类(体积分数)的生物复合 物。以往研究[7]显示牙釉质的主要吸收波段在 3 μm,7 μm附近以及 9~11 μm 区间。在 3 μm 处 的吸收主要与组织中的水有关, 而在 2.8 μm 处的 吸收峰与羟磷灰石中的 OH 离子有关。Er: YAG 激光是λ= 2.94 μm的近红外激光,波长正好落于 水的重要吸收带(3.0 µm)。辐照时,激光能量被牙 釉质中的水分子和有机成分强烈吸收,导致瞬间高 温和气化。由此在辐照组织内产生的瞬间高气压引 起组织微爆,这就是 Er: YAG 激光消融的主要原 理。Er,Cr:YSGG激光发射2.79 μm 附近的中红外 光,波长正好落于水的重要吸收带和羟磷灰石中 OH的吸收峰附近。这种激光器切削牙齿的机理叫 作热机理过程。在此过程中,牙釉质羟磷灰石中的 水分子吸收激光[17~19]。水被瞬间加热然后蒸发,产 生高压蒸气,在牙齿切削点下方发生微爆(温度上升 到约1200℃),从而去除周围的矿物质。牙齿切削

光

中

点经历了焦化、熔融、粗糙、熔化、重结晶、泡状内含物、剥落、裂成坑状等改变^[20],最终在牙齿表面形成 类似于牙齿酸蚀效果的不规则坑状结构。在此过程 中,被组织吸收的激光热能大部分转化为动能,理论 上不会引起深层组织的热损伤。正是基于 Er, Cr:YSGG激光的特点,越来越多的学者开始关注并 尝试将其应用于牙齿硬组织切割方面^[21,22]。

高倍镜下观察到的细小碎屑可能是因为激光辐 照引起的微爆作用而产生的,也可能是熔融以后局 部再结晶的结果。

在一些样本中观察到微小裂纹,有些样本甚至 在辐照以前就存在微小裂纹。其原因有:1)牙釉质 片制备过程中切割器械引起牙体硬组织内部应力集 中。2)样本在进行扫描电镜观察前的干燥处理引起 组织内脱水过度,进而导致矿物质成分裂解。3)激 光辐照引起局部微爆,微爆力横向传播。

牙釉质逐步从局部消融发展到大面积消融,同时 产生不规则边缘。这种消融所产生的不规则形貌便 于牙科临床进行酸蚀处理和牙科材料的粘结修复。

4 结 论

实验结果表明,消融阈值受到各种因素的影响。 研究还观察到激光消融牙釉质形成"弹坑样"的洞, 这与传统的旋转工具制备的窝洞有很大的不同,这 样的消融形貌对于后期牙齿粘结修复的效果存在潜 在的影响,需要进一步进行实验研究。

参考文献

1 Zhang Xianzeng, Xie Shusen, Zhan Zhenlin *et al.*. Influence of different defocus conditions on bone hard tissue ablation with pulsed CO₂ laser [J]. *Chinese J. Lasers*, 2008, **35** (7): 1116~1120

张先增,谢树森, 詹振林 等. 不同离焦条件对骨硬组织激光消融 的影响[J]. 中国激光, 2008, **35**(7): 1116~1120

- 2 H. A. Wigdor, J. T. Walsh Jr, J. D. Featherstone *et al.*. Lasers in dentistry [J]. *Laser Surg. Med.*, 1995, **16**(2): 103~133
- 3 A. Bahar, S. Tagomori. The effect of normal pulsed Nd-YAG laser irradiation on pits and fissures in human teeth [J]. Caries Res., 1994, 28(6): 460~467
- 4 G. F. Huang, W. H. Lan, M. K. Guo *et al.*. Synergistic effect of Nd: YAG laser combined with fluoride varnish on inhibition of caries formation in dental pits and fissures in vitro[J]. J. the Formosan Medical Association, 2001, 100(3): 181~185
- 5 N. G. Kumar, D. S. Mehta. Short-term assessment of the Nd: YAG laser with and without sodium fluoride varnish in the treatment of dentin hypersensitivity-a clinical and scanning electron microscopy study [J]. J. Periodontol, 2005, 76(7): 1140~1147
- 6 Reza Birang, Jamshid Poursamimi, Norbert Gutknecht et al..

Comparative evaluation of the effects of Nd: YAG and Er: YAG laser in dentin hypersensitivity treatment[J]. Lasers Med. Sci., 2007, 22(1): $21 \sim 24$

- 7 F. H. Takeda, T. Harashima, Y. Kimura *et al.*. A comparative study of the removal of smear layer by three endodontic irrigants and two types of laser[J]. *Int. Endod* . J., 1999, **32**(1): 32~39
- 8 C. Apel, J. Meister, R. S. Loana *et al.*. The ablation threshold of Er: YAG and Er: YSGG laser radiation in dental enamel[J]. *Lasers Med. Sci.*, 2002, **17**(4): 246~252
- 9 R. Hibst, U. Keller. Experimental studies of the application of the Er: YAG laser on dental hard substances: I. measurement of the ablation rate[J]. Laser Surg. Med., 1989, 9(4): 338~344
- 10 D. Fried, J. D. B. Featherstone, S. R. Visuri *et al.*. The caries inhibition potential of Er: YAG and Er: YSGG laser radiation[C]. SPIE, 1997, 2672: 73~78
- 11 A. V. Belikov, A. V. Erofeev, V. V. Shumilin *et al.*. Comparative study of the 3 μ m laser action on different tooth tissue samples using free-running Er-doped YAG, YSGG, YAP and YLF lasers[C]. *SPIE*, 1993, **2080**: 60~67
- 12 H. W. Kang, I. Rizoiu, A. J. Welch. Hard tissue ablation with a spray-assisted mid-IR laser [J]. *Phys. Med. Biol.*, 2007, 52(24): 7243~7259
- 13 Zhang Xianzeng, Xie Shusen, Lin Huiyun. Spectra characteristics of laser ablation threshold of biotissue [J]. Acta Laser Biology Sinica, 2006, 15(1): 97~100 张先增,谢树森,林薏韫. 生物组织激光消融阈值的光谱特性 [J]. 激光生物学报, 2006, 15(1): 97~100
- 14 Zhang Jizhuang, Zhang Xuexue. Effect factors of laser tissue ablation[J]. Chinese J. Lasers, 2007, 34(2): 300~304 张纪庄,张学学. 激光蚀除生物组织的影响因素[J]. 中国激光, 2007, 34(2): 300~304
- 15 Lin Huiyun, Xie Shusen, Li Hui *et al.*. Discussion on the ablation threshold of laser radiation in biotissue[J]. *Acta Laser Biology Sinica*, 2004, **13**(6): 425~428
 林慧韫,谢树森,李 晖等.关于生物组织激光消融阈值的讨论 [J]. 激光生物学报, 2004, **13**(6): 425~428
- 16 Yu Yongai, Zhang Lingling, Tang Qianjin *et al.*. Real-time laser beam quality measurement technique [J]. *Chinese J. Lasers*, 2007, 34(2): 255~258
 于永爱,张玲玲,唐前进等.激光束质量实时测量技术[J]. 中国激光, 2007, 34(2): 255~258
- 17 John D. B. Featherstone, Daniel Fried. Fundamental interactions of lasers with dental hard tissues [J]. Med. Laser Appl., 2001, 16(3): 181~194
- 18 J. Meister, R. Franzen, K. Forner *et al.*. Influence of the water content in dental enamel and dentin on ablation with erbium YAG and erbium YSGG lasers[J]. *J. Biomed. Opt.*, 2006, **11**(3): 034030
- 19 K. S. Kim, M. E. Kim, E. J. Shin. Irradiation time and ablation rate of enamel in contact and non-contact irradiation with Er: YAG laser[J]. *Photomed. Laser Surg.*, 2005, 23(2), 216~218
- 20 L. Serebo, T. Segal, D. Nordenberg *et al.*. Examination of tooth pulp following laser beam irradiation [J]. *Lasers Surg. Med.*, 1987, 7(3): 236~239
- 21 A. Aminzadeh, S. Shahabi, L. J. Walsh. Raman spectroscopic studies of CO₂ laser-irradiated human dental enamel [J]. Spectrochim. Acta Part a Mol. Biomol. Spectrosc., 1999, 55(6): 1303~1308
- 22 Regina Guenka Palma Dibb, Silmara Aparecida Milori Corona, Maria Cristina Borsatto *et al.*. Assessing microleakage on class V composite resin restorations after Er : YAG laser preparation varying the adhesive systems[J]. J. Clinical Laser Medicine & Surgery, 2002, 20(3): 129~133